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Steady State Creep of a Composite 
Material with Short Fibres 

S. T. MILEIKO* 
Institute of Solid State Physics of the Academy of Sciences of the U SSR, Moscow, U SSR 

The shear within a matrix volume is assumed to be an important process during the creep 
of composite material reinforced with short rigid fibres. The rate of elongation of such a 
composite with certain fibre distributions can be estimated. The agreement with a few 
experimental data is reasonably good. 

1. Introduction 
Various deformation processes of a matrix and 
fibres can take place during the creep of a fibrous 
composite. Considering the stability and long- 
time rupture of such materials one should also 
take into account processes localised at the fibre- 
matrix interface. However, for a first approach 
to a solution of the problem it is certainly 
possible to disregard the special problem of  the 
interface for two reasons. Firstly, at the present 
time the physical description of the behaviour of  
the interface is insufficiently comprehensive to 
form a base on which to construct a model for 
calculation. Secondly, it is possible to describe 
to  a first approximation the creep and creep- 
rupture behaviour of sufficiently stable 
continuous fibrous composites based only on the 
properties of a matrix and fibres [1 ]. 

The present state of affairs in the problem of 
the creep of  discontinuous fibrous composites, 
as far as the author is aware, is that there are only 
the experimental results of Kelly and Tyson [2] 
and the unpublished work by McLean [3], who 
analyses the problem taking into account the 
contribution of  the shear of  the interface and the 
diffusion creep of a matrix at the end of a fibre. 

I t  seems to be clear, following the experience 
of  mechanical theories of creep of homogeneous 
materials, that the only way of  developing the 
engineering theory of  fibrous composites that 
might have real practical application is by build- 
ing up some combination of more or less simple 
models. 

The purpose of the present paper is to deter- 
mine the r61e of such parameters of  the compo- 
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site as the fibre aspect ratio, the volume fraction 
of fibres, and the distribution of fibres in a 
matrix. This will be done after a consideration of 
a shear model of a unidirectional fibrous 
composite with short rigid fibres under steady- 
state creep with a load applied in the direction of 
reinforcement. The resistance of a matrix to the 
tensile stress is assumed to be negligible, which 
corresponds to a large difference between the 
stiffness of the matrix and that of the fibres. The 
model material is composed of  a n_umber of  
simple shear cells, which are stretched under the 
condition of compatibility. 

2. Creep of a Simple Shear Cell 
2.1. The Plate-like Cell 
We shall consider a simple shear cell composed of 
two rigid plates, which have length L in the x- 
direction, and area ABCD, which is a matrix 
attached to the plates in such a manner that the 
creep properties of the interface are not different 
from those of the matrix (fig. 1). The creep of the 
matrix is described by the usual equation [4]: 

(;m) = em ' (1) 

where E is the tensile creep rate, cr is the tensile 
stress, and Era, crm, and m are constants, only two 
of which are independent. One can then write 
for pure shear of a matrix: 

= Em (2) 

where ~ is the shear strain rate, r is the shear 
stress, and Em and m are constants equal to the 
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Figure 1 Longitudinal section of a simple plate-like cell. 

same parameters as in equation 1. The Tresca-St. 
Venant condition of flow gives 

O'm = 2"rm. (3) 

The external load divided by the total transverse 
area of the two rigid plates will be denoted by C. 
Here and subsequently the values marked by one 
prime relate to reinforcing components; the 
values related to the matrix are marked by two 
primes; the ones related to the composite as a 
whole are not marked with primes. We shall 
call reinforcing components "fibres" independent 
of their real shape even if they are plates. The 
movement of  fibres is assumed to be such that the 
directions of their longitudinal axes are not 
changed. The matrix is in a uniform state of 
simple shear and so the value of  the shear stress 
at any point in the matrix will then be given by 

load g'n'/2.2 h' 
- r"- -  l - - ; - -  1' - - ' r " = l ' C '  (4) 

taking the shear cell in fig. 1 to have unit depth. 
Using this value and equation 2 one can 

determine the shear rate ~/ in the matrix and 
hence the rate of  relative motion of plates, thus: 

\,,.,] \ r] �9 (5) 

Introducing a value for the fibre volume fraction 
Vf =h' /(h '  -F h") we can rewrite equation 5 in the 
form: 

v = 2'++,+ ~- \ l ' ]  Vf" (6) 

Here ~ = ~r'Vf is stress, related to the total area 
of  a transverse section of  the cell. 

I 
~ ~ I~,, 

V 
Figure 2 Transverse section of a shear cell to be used for 
the construction of a composite with hexagonal fibre 
distribution. 

y-direction is now non-homogeneous; its value 
for the section that has size b(y) can be found as 
follows, see fig. 2. The depth of the cell can be 
taken as l'. The shear stress in the matrix on a 
plane distance y from the fibre surface is 

load cr' x 2 x �89 x h'/2 x h'/~/3 
r<~> = A(y)--= 2(y/43 ) x l '  

_ h '  
- 

h i  

~(~) = ~-' ~y at �89 ~< y ~< �89 + h') (7) 

where 

h' I ! 

" = �89 T (8) 
is the shear stress at the interface. 

Equations 2, 3, 7, and 8 then determine the 
shear strain rate: 

\ ,rm/ \ l '] �9 (9) 

The rate of relative motion of  the two fibres will 
be 

�89 h" + h") 

v = 2  ~(y) dy m - - 1  
�89 

m - - 1  

2.2. The Cell of a Composite with Hexagonal 
Array of Fibres Here 

Next we shall obtain a similar expression for a 
cell of another form, that shown in fig. 2. We 
shall be using this expression later in the 
calculation of the creep-rate of a model with a 3. 
hexagonal net of  fibres. 

The shear stress distribution with regard to the 

/ h ' \  m ,1 -- Vf --T 

h' ~ . 
vf = \h' + h"} 

(I0) 

Uniaxial Creep of a Non-homogeneous 
Rod 

Before we start to consider the behaviour of a 
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composite model composed of a number of the 
simplest cells with different values of  overlap, l', 
let us consider the creep of  a non-homogeneous 
rod which is a set of  an infinite number of 
longitudinal elements loaded in parallel. The 
creep of each element will be governed by the 
equation 

= ~ , ( I  1) 

where 6 is the stress in the element, E,~ and n are 
constants, or. is not a constant and different 
elements have a different value for a.. Let us 
assume that there is some distribution ~(~r.) of 
the value or. over the interval (0, a.*) so that 

fqS(cr.) dcr~ = (12) 1 o 

0 

If  the rate of  extension of  all the elements is e, 
we have 

\ e , /  

Then the equation of equilibrium is 

I #(~(a, 0 d% = or, (13) 

0 

where cr is the average stress for a rod, and this 
gives 

e = e~ (14) 

where 
O-n �9 

(~,~) =/cr,~(cr,~) dcrn (15) 

0 

is the expectation of the value ~,, [5]. 

4. C r e e p  of  a C o m p o s i t e  M o d e l  
4.1. Plate-l ike Reinforcement  
We shall now consider a composite construction 
composed of plate-like cells of  the symmetrical 
type (l' = L/2) as shown in fig. 3. Here q is the 
number of fibres within a given length and h' is 
the thickness of each fibre. The rate v of relative 
motion of the fibres under the condition of 
steady state creep is constant. The rate of 
relative displacement of two transverse sections, 
i.e. the rate of steady state creep of the model, 
will be: 
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Figure 3 Longitudinal section of the model with the ideal 
fibre distribution, 

2v 
e = (1 -- 1/q ~ --s (16) 

since the number q is usually quite large. 
Substituting equation 16 into equation 6 one 

gets 

[ ~ ~ 2 =m+l 1 / g f -  1 
(17) 

Here p = L/h' is the aspect ratio of a fibre. We 
shall now estimate the influence of a non- 
symmetricaldistribution of fibres in a longitudinal 
section. The parameter l' is assumed to have a 
value ranging from 0 to L with equal probability 
(fig. 4). The creep resistance of longitudinal 
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Figure 4 A chain of the simple cells with non-symmetrical 
overlap of the fibres. 

elements composed of such cells will depend on 
the value l', and one can write, using equation 6: 

21J = 1 2 1 - ~  2 =2'~E,~ ~ h' L \ l ' /  

q _ ( L h ' / , )  "~] 1/V,--1V( ~ (18) 

The meaning of the notations vl and v2 is clear 
from fig. 4. The creep rate of a longitudinal 
element will be 

= ~ V~ '~ + (1 z )  - - - - - - - - - ~  
2 m 

• p ~  (19) 
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and 

where z = l'/L and 5 is the stress in an element. 
Now the approach of section 3 can be used, and 
applying formulae 14 and 15, in which it is 
necessary to put 

1 

(1 - z ) reJ  

we obtain 

where 

2 '~ 1 / v ~  - 1 
�9 n = �9 p~,+l V~ (21) 

(crn) = e+nJCm) (22) 

d z  1 
1 1/re 

0 

Finally instead of formula 17 for the regular 
distribution of fibres we have an expression for 
the creep rate for a model with fibres of  random 
distribution in a longitudinal plane: 

( ~ ) ~ '  2re 1 / V ~ - - I  
�9 = � 9  ~m pre+l  Vfre [JCm)l-re" (24) 

Table I contains the values J(m) for some values 
of  the parameter m. 

T A B L E  1 

rn 1 2 4 6 oo 

J(m) 0.167 0.215 0.239 0.245 0.250 

The situation here is similar to that which 
emerges in the solution of problems of steady 
state creep when one uses a creep law in the form 
of a power function [4]: the consideration of a 
stress state corresponding to that for an ideally 
plastic material (m = oo) will not contribute a 
large error in the estimation of the load bearing 
capacity of a structure, if the power rn has a real 
value ~> 3. In our case it is reasonable to assume 
J(m) = J ( o o ) =  ~. A comparison of formulae 
17 and 24 gives the relation of the stress for the 
random distribution of fibres (c~) and the ideal 
that (~j): 

0"i/0" ~-  21-1/m . (25) 

Proceeding in a similar manner one can show 
that small local fluctuations of the volume 
fraction Vf, which correspond to a non-regular 
structure in a transverse plane, have compara- 

tively little effect on the creep-rate of  a compo- 
site. 

4.2. Hexagonal Fibre Array 
Next we shall construct a model of  a composite 
having as components the elemental cells shown 
in fig. 2. We shall make the model such that, 
situated at the nodes of  the hexagonal plane 
lattice, will be the fibres of  hexagonal form and 
of length L. The junctions between the longitu- 
dinal surfaces of  fibres will be assumed to be 
welded in a rigid way. The distribution of fibres 
in a longitudinal section is such that the distribu- 
tion function of the value l' is one of equal 
probability. 

Now using equation 10 one can write a chain 
of  expressions, which are similar to 18 to 24 and 
finally the expression for the creep-rate of  a 
composite with a hexagonal net of  fibres can be 
obtained in the form: 

m--1 

�9 - -  - -  [J(m)]-re. m --  1 pre+l Vfre 
(26) 

To judge the efficiency of the reinforcement of a 
creeping matrix with short rigid fibres let us 
introduce the parameter  of  hardening 
kmax = ere/aM as a ratio of  the average composite 
stress (ae) to the stress cr~ for a non-reinforced 
matrix which would produce the same creep-rate. 

From equations 26 and 1 we obtain 

kmax = (m --  1) ~/re J(m) V~ pi+i/m 
m--1 

(1 - -  Wf "-'~- )1/~7~ 

(27) 

5. The Limits of Applicabil ity 
Here we shall trace the limits for the values of  p 
and V~ within which the relationships obtained 
for the hexagonal net of fibres can be applied. 
(Similar expressions for a plate-like reinforce- 
ment can be obtained in the same way.) The 
assumption concerning the rigidity of the fibres is 
valid, as the rigidities of  a matrix and fibres 
usually have different orders of magnitude. 
However, real fibres loaded by increasing stress 
can either rupture in a brittle manner or start to 
creep, if the temperature is high enough. 

5.1. The First Critical Value of the Aspect 
Ratio 

In the case of brittle fibres we shall define the 
first critical value p* of the aspect ratio of  fibre, 
as the value "of p coinciding with the boundary 
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between the interval for p, where formula 26 is 
still valid, and the interval where there are 
probably some fibres which are broken. The 
condition for the first fibres to rupture is when 
the most highly stressed fibres reach their ulti- 
mate strength. Since different longitudinal chains 
have different stiffnesses, the chain stresses vary. 
The fibre stress depends upon the relative location 
of the six fibres surrounding each fibre. The most 
highly stressed fibre will be that which is 
surrounded by symmetrical cells only ( z = } ) .  
The probability of  such a situation can be 
calculated, but to estimate p* it is sufficient to 
know the value of the maximum stress (e'max). 

I t  can be shown that 

O"m~x (Y~ rriax 
, - < ~ & ,  ( 2 8 )  

where or' is an average fibre stress in a transverse 
section of the specimen. But since from equation 
20 

O'ra 
O'r~ m a x  = 21+1/ 'm 

when z = 1, we obtain by taking into account 
equation 22: 

O" 

(/max --  21+l/~j(rn ) (29) 

An average fibre stress d at the creep rate 
which is caused by the stress ~u applied to a non- 
reinforced matrix can be obtained from equation 
27 at p < p*: 

# p l + l / m  
= (m - -  1)llmj(m) m--I r  (30) 

(1 - v:w)>,, 

Now we obtain from equations 29 and 30 the 
maximum value C/max of fibre stress and assum- 
ing it to be equal to the ultimate strength % '  of 
the fibre, we can write the expression for the 
critical value of  O as: 

1 ~ m--1  1 

p* = 2  1 - -  Vf 2 
\ c~,>, I m - 1  

(31) 

The significance of this value of the aspect ratio 
is that  at p > p* the rate of  hardening is not so 
high as at p < p% and some fibres fail because 
they cannot sustain the stress which can be 
transferred to them by the creeping matrix. A 
further stress redistribution takes place and the 
dependence of the creep-rate of  a composite, 
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given by equation 26, which contains component  
p-(l+m) is no longer valid. This situation is 
illustrated by fig. 5. 
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Figure 5 Schematic diagram for the creep behaviour of a 
fibrous composite with brittle fibres, Vf = const, 
% = cr.'V t 2i+W m J(m), (from equation 29) %/c~ M = 

kmax > ~2/~M, Pl < P* < P2 �9 

5.2. T h e  S e c o n d  C r i t i c a l  V a l u e  o f  t he  A s p e c t  
R a t i o  

The model considered also does not work when 
the fibre stress is large enough to cause an appreci- 
able creep-rate of  the fibres. Here we sketch the 
method of estimating the second critical value 
p** such that at P > P** the contribution of the 
fibre creep is larger than that of  the shear creep 
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Figure 6 Schematic diagram for the creep behaviour of a 

fibrous composite wKth creeping fibres, Vf ~ const. For 

thestress%:Pl < P2 < Pa < P**,for%:p2 < p** < pa,for 
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of a matrix. Hence at values of  the aspect ratio 
which are much larger than p** the fibres can be 
assumed to be continuous. For  a continuous 
fibrous composite, neglecting a contribution of 
the matrix and a radial interaction of the fibre 
and the matrix, one can have: 

e = ei Vf----" " 

Here r = era, cri and n are constants for a 
particular fibre material. Defining the value p** 
as that which gives equal creep rates according to 
equations 26 and 32 ,we obtain: 

I n - - m  m - - 1  1 

P * * =  [(o./o-m)m] l+m Vfm+l (1 - -  We 2 ) l+m 

(33) 

For  J(m) = ~ and for normal values of  Vf and 
m: 

1 

( _ ~ /~ ]  i+m n - - m  

m + l  
0"* ~ 4 \,:r~/ [ Vf (34) 

I t  will be noticed that the expression in the 
brackets is the ratio of  the creep rate of  the 
matrix to that of  the fibre at a stress equal to the 
average composite stress. 

The relationships are illustrated in fig. 6. Here 
a change in behaviour of  a composite from the 
short fibre situation to that of  continuous fibres 
is traced schematically by dash-dot lines. These 
lines correspond to the behaviour of  a composite 
in which the contribution of the fibre creep is of  
the same order of  magnitude as that of  the matrix 
creep. 

Generally we shall define as a composite with 
short fibres, one that satisfies both the inequalities 

p < p * a n d p  < p** .  

When one of those inequalities is not satisfied, 
we are dealing with a composite with long fibres. 

5.3. The Limits for Volume Fraction 
At sufficiently small values of  the volume fraction 
of fibres the carrying capacity of  a matrix for 
tensile stress should not be neglected. I t  is 
possible to find approximately such a minimum 
volume fraction Vf rain, so that at Vf = Vf min the 
creep rate of  a matrix without reinforcement by 
fibres (1) and the creep rate of  the model (26) are 

equal. The comparison of these values when Vf 
is small and m is sufficiently large gives: 

1 1 1 
V, rain = (m --  1) lm px+l/m J(m)" (35) 

At high volume fractions the model is also not 
valid. Bearing in mind the comparison of  the 
model with a real composite containing circular 
fibres, one may find the value Vf max correspond- 
ing to the close-packed arrangements of  fibres, 
t h e n  Vfmax = 0.91. 

5.4. The  Upper  Limit of Carrying Capaci ty  of 
a C o m p o s i t e  

The results obtained should be considered as the 
lower limit of  carrying capacity of  a composite: 
the stress after these calculations is less than that 
given by an exact solution, because we have 
assumed some free surfaces within the volume of  
a composite to exist and have also neglected the 
transverse interactions between separate chains 
of  simple cells. 

The upper limit of  the carrying capacity of  the 
composite with the same free surfaces could be 
obtained after consideration of a kinematically 
possible stress field. Suppose the stress distribu- 
tion through the set of  simple cells is such that  
the rate of  relative motion of two fibres in each 
cell is constant. Then v = vl = v2, and f rom 
equations 10 and 16 we have, for a hexagonal 
array of  fibres, the cell's stress for a given creep 
rate e, and a cell with characteristic size z: 

1 1 

~(z) = ~ p ~ 

V~ (36) 
x [ 1 - -  v,m@] i'm ~,~z. 

Having the average stress c~ in a transverse 
section for the distribution of the equal prob- 
ability for a value z 

1 

= ; ~(z) dz 

0 

we obtain finally 

(37) 

rn--I 
2ra+l {ff.~)m 1 1- -  Vf 2 

E -  - -  E ,~  - -  ( 3 8 )  
m --  1 \crm ] pX+m VI m 

The ratio of  the upper limit of  stress or+ from 
equation 38 and the lower limit or_ from equation 
26 for a given creep rate 
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G + / o "  --~ 21 -1 /m (39) 

is quite high. But more exact and more sophisti- 
cated analysis of  this highly simplified composite 
model can hardly be justified. The conception of  
chains with fixed parameters is an assumption 
which simplifies drasticaIIy the analysis but could 
give an uncertain error. 

Bearing this in mind we shall compare in the 
next section the results of  the experiment with the 
theoretical prediction of the lower limit of  
composite stiffness. 

6. Comparison with Exper iments  
There are few experimental results on the creep 
of  discontinuous fibrous composites. The only 
available work [2] contains some results of  
experiments carried out withthecomposite Ag-W 
with a volume fraction of the tungsten wire 
V~ = 0.4 and p equal to 30 and 60. The tempera- 
ture in these experiments was 400 to 600 ~ C. In 
this work there is not enough information about  
the creep properties of  the matrix used. Conse- 
quently the value of parameter  m which will be 
used now has been taken from the work by 
Price [6] for silver with a purity of  99.99 ~ ,  and 
m for the temperature T = 600 ~ C has been 
obtained by extrapolation. The data on the creep 
properties of  tungsten at T = 600 ~ C have been 
obtained from the work by Harris and Ellison [7] 
by extrapolation. All these data are collected in 
table II. 

T A B L E  I I  

T, o , ' ,  n ~f, in ore, ern, 

~  k g f  k g f  k g f  h -*  
m m  2' l i lm 2 mm ~' 

400 183 - -  - -  6.00 1.88 10 -4 

600 167 53 145 4.50 0.66 10 -4 

These data have been used for calculations of  
some parameters of  the composites tested by 
Kelly and Tyson [2]. The results of  the calcula- 
tions are shown in table III.  

T A B L E  III 

T, ~ 400 6O0 

kmax a t  p = 30 8.10 8.57 

kr~ax a t  p = 60 18.2 - -  

p* a t  e = 10 -z h -1 58 62 

p* a t  �9 = 10 -4 h -1 80 

p** a t  c~ = 10 k g f  m m  -2 - -  605 

Vr rain a t  p = 30 0.058 0.125 

Vf rain a t  p ~ 60 0.024 
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The test results at the temperatures 400 and 
600 ~ C for the matrix (few points) and the 
composite with p = 30 are plotted in fig. 7. 
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Figure 7 Comparison of the experimental data by Kelly and 
Tyson for Ag-W composite with p = 30. Open points - for 
600 ~ C, closed points - 400 ~ C. - -  - Results of calcula- 
tions on the present method. 

Theoretical lines are also shown. At 400 ~ C the 
fit between the theoretical prediction and experi- 
mental data is quite good. The calculated curve 
gives stresses about I0 to 15 ~ lower than the 
experimental results; this can be understood 
because the model must give a low estimation of 
the composite stress for a given creep rate. The 
departure of  experimental points in the opposite 
direction at T =  600 ~ C can be caused by 
weakening of the interface as a consequence of 
diffusion of  oxygen through the matrix and 
subsequent oxidation of the tungsten wire. This 
phenomenon was noticed by the authors [2]. 

To compare the experimental data obtained at 
400 ~ C for a composite with p = 60 is difficult 
because the value of the aspect ratio in this case 
is very close to the first critical value (table III),  
and therefore experimental points may be on the 
dash-dot line portion of  curve E --  o- drawn in 
fig. 5. I t  is interesting to notice that the authors 
in their work observed that a small fraction of 
fibres was broken. This is quite in agreement 
with the model presented here. I t  will be noticed 
also that the description of the creep properties 
within a vast range of stress very often demands 
that equation 1 be changed in such a way that 
the exponent m is no longer a constant. It  may 
take different values in different intervals of  
stress. In this case it is necessary to modify the 
calculations in the appropriate manner. 

7. Conclusions 
The behaviour of  the simple shear model of  a 
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composite material  reinforced with short  rigid 
fibres has been analysed under  conditions o f  
steady-state creep. The analysis makes it possible 
to estimate the creep-rate o f  a fibre composite,  
and to determine its critical parameters.  The 
compar ison with the only set o f  experimental 
da ta  available shows good enough agreement 
between the creep properties measured in the 
experiment and predicted values. 
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List of main symbols 
Vf = volume fraction o f  fibres in composite.  
p - -  aspect ratio o f  a fibre 
L = length o f  a fibre. 
h' = transverse size o f  a fibre. 
h" = interfibre spacing. 

m, crm, E m =  constants for  creep for  a matrix 
material. 

n, crf, Ef = constants o f  creep for a fibre material, 
Ef ~ E m- 

v = rate o f  relative mot ion  of  two fibres. 
or.' = ultimate strength o f  a fibre. 
p* = the first critical value o f  aspect ratio. 

p** = the second critical value o f  aspect ratio. 
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